
Unit 04-07 - Non-Linear Regression Models

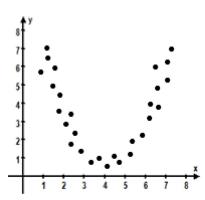
Multiple Choice

Identify the choice that best completes the statement or answers the question.

Other Regression Models

Which model would best represent the scatter plot shown at the right?

- a. Cubic
- b. Sinusoidal


c. Exponential

Date:

d. Logistics Curve

2. Other Regression Models

Which model would best represent the scatter plot shown at the right?

- a. Cubic
- b. Quadratic

- c. Exponential
- d. Logistics Curve
- 3. An ant colony is growing and doubles in population every 2 months. On the initial day of study the colony had 48 ants. The table shows the ant population of the colony at the end of the first few months.

Time (months)	0	1	2	3	4			
Ant Population	48	72	108	162	243			

Which type of model would be the best model to describe the relationship of the ant colony population over time?

- a. Linear Model
- b. Quadratic Model
- c. Exponential Model

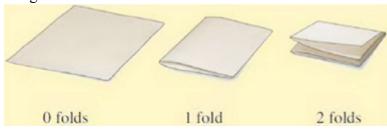
4. Other Regression Models

A person drinks a Red Rhino energy drink that has approximately 100 mg of caffeine in it. A doctor measures the approximate amount of caffeine in the person's body x hours after drinking it and recorded the following results below.

Time (hours)	0.5	1	1.5	2
Caffeine (mg)	93	87	81	76

Using your calculator determine an $\underline{\text{exponential}}$ regression model that is most appropriate where x represents hours after drinking the energy drink and y represents the number of milligrams of caffeine in the body.

a.
$$y = 99.50 \cdot 0.8734^x$$


c.
$$y = 98.5 - 11.4x$$

b.
$$y = 98.50 \cdot 0.1140^x$$

d.
$$v = 99.956 \cdot 0.99978^x$$

5. Other Regression Models

A piece of paper is repeatedly folded in half and the total thickness of the folded paper is measured using a micrometer.

Number of Folds	0	1	2	3
Thickness (mm)	0.07 mm	0.15 mm	0.32 mm	0.70 mm

Using your calculator determine an <u>exponential regression model</u> and use your model to predict how thick the folded paper would be on the 6^{th} fold.

a.
$$\approx 1.421 \text{ mm}$$

c.
$$\approx 5.828 \text{ mm}$$

b.
$$\approx 3.221 \text{ mm}$$

d.
$$\approx 6.933$$
 mm