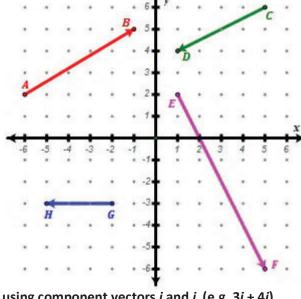
Describe each of the following vectors in rectangular form $\langle x, y \rangle$ and using component vectors i and j (e.g. 3i + 4j)

A. Describe Vector \overrightarrow{AB} :

B. Describe Vector \overrightarrow{CD} : C:(5,6)


C. Describe Vector \overrightarrow{EF} : $\mathbf{E}^{\mathsf{L}}(\mathbf{l}_1, \mathbf{l}_2)$

EF: (5-1, -6-2): (4,-8)

D. Describe Vector \overrightarrow{GH} : G: (-2,-3)

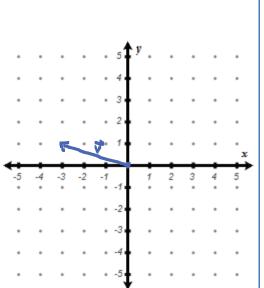
Gii: <-5-2, -3--3>: <-3, 0>:

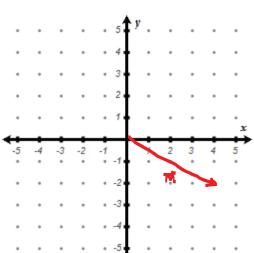
2. Describe each of the following vectors in rectangular form $\langle x, y \rangle$ and using component vectors i and j (e.g. 3i + 4j)

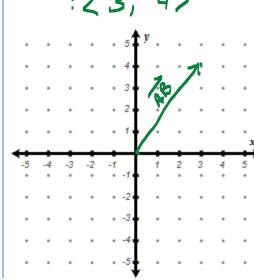
A. Describe Vector \overline{MN} given

point M(-4, 2) and N(2, 6)

MN: 〈2--4, 6-2〉


B. Describe Vector \overrightarrow{ST} given point S(3, -2) and T(-4, 6)

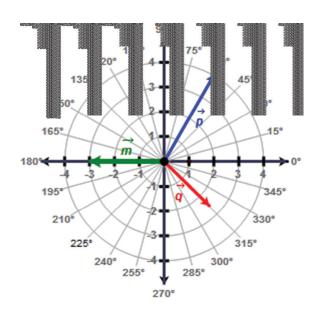

3. Create a graph of each of the following vectors in standard form.


A. The vector \vec{v} : $\langle -3,1 \rangle$

C. The vector \overrightarrow{AB} given point A(-2, 2) and B(1, 6)

4. Describe each of the following vectors in polar form $\langle r, \theta \rangle$.

A. Describe Vector \vec{p} :


<4,60°>

B. Describe Vector \vec{q} :

(2.5, 315')

C. Describe Vector \vec{m} :

<3, 180°> or <-3, 0°>

5. Create a graph of each of the following vectors in standard form.

45°

30°

15°

345°

A. The vector \vec{v} : $\langle 4,150^{\circ} \rangle$

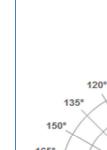
1059

120°

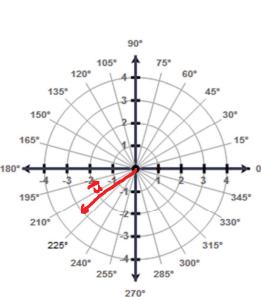
135

150

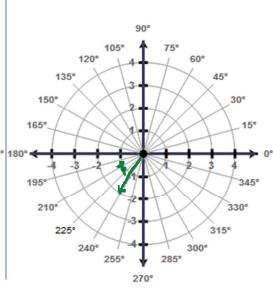
165°


195°

210

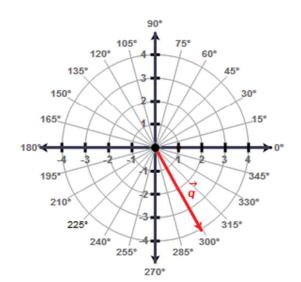

225°

240°


255°

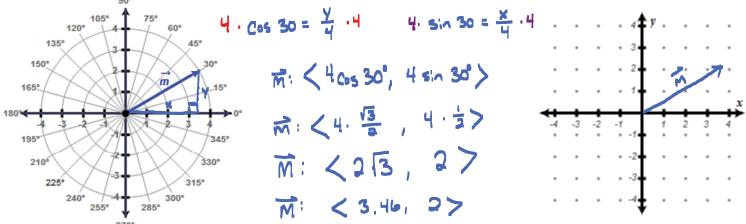
B. The vector \vec{u} : $\langle 3, -140^{\circ} \rangle$

C. The vector \vec{p} : $\langle -2,60^{\circ} \rangle$

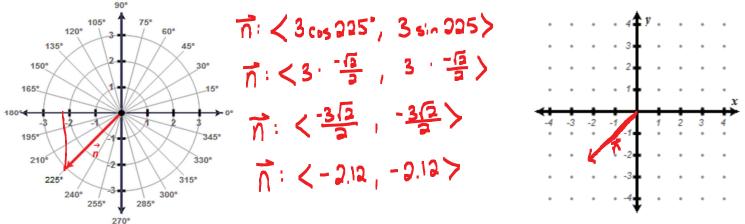


6. Determine at least 4 ways to describe vector \vec{q} in polar form:

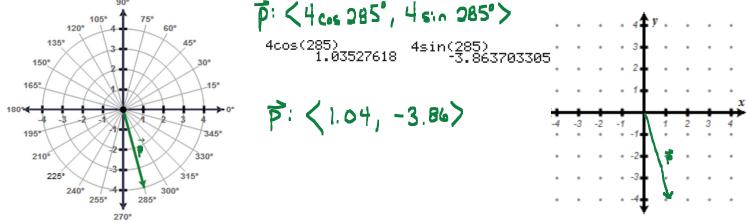
315°

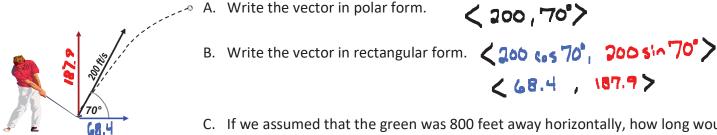

300°

285°

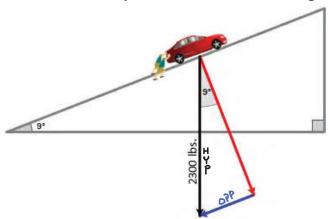


7. Rewrite each of the following vectors from polar form to rectangular form.


A. Rewrite vector \vec{m} in rectangular form and graph it on the rectangular graph paper in standard position.

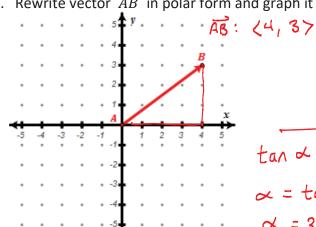

B. Rewrite vector \vec{n} in rectangular form and graph it on the rectangular graph paper in standard position.

C. Rewrite vector \vec{p} in rectangular form and graph it on the rectangular graph paper in standard position.


8. Consider the golfer below. He struck the ball so that it was moving at a speed of 200 feet per second at a 70° angle.

C. If we assumed that the green was 800 feet away horizontally, how long would it take the golf ball to reach the green (assuming air resistance wasn't a factor)?

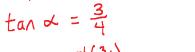
pg. 125


9. Consider the ramp shown below. A car that weighs 2300 pounds is being pushed up a ramp with a 9° elevation.

How many pounds of force must the people use just to hold the car in place on the ramp?

$$\sin(9) = \frac{x}{2300}$$

- 10. Rewrite each of the following vectors from rectangular form to polar form.
- A. Rewrite vector \overrightarrow{AB} in polar form and graph it on the polar graph paper in standard position.

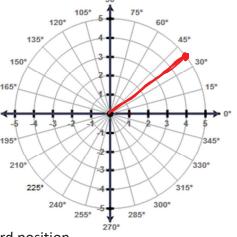


$$4^2 + 3^2 = c^2$$

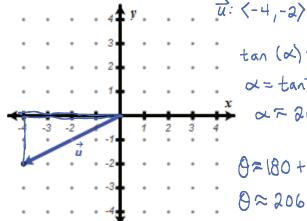
$$6 + 9 = c^{2}$$
 $\sqrt{25} = \sqrt{c^{2}}$
 $5 = c$

$$\sqrt{25} = \sqrt{c^2}$$

$$5 = c$$



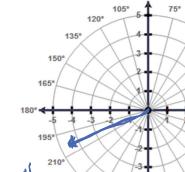
$$\alpha = \tan^{-1}(\frac{3}{4})$$


$$\alpha = 36.9^{\circ}$$

 $4^2 + 2^2 = c^2$

 $16 + 4 = c^2$

B. Rewrite vector \vec{u} in polar form and graph it on the polar graph paper in standard position.

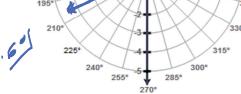


$$\tan (\alpha) = \frac{1-21}{1-41}$$

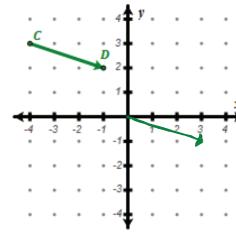
$$\alpha = \tan^{-1}(\frac{2}{4})$$

$$\alpha = \tan^{-1}(\frac{2}{4})$$
 $\alpha = 26.57^{\circ}$

$$an^{-1}(\frac{2}{4})$$
 $\sqrt{20} = 4.47$

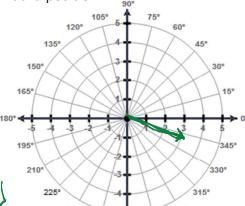


- A=180+26.57
- A = 206.57


(4.47, 206.6)

 $3^2 + 1^2 = c^2$

 $\sqrt{10} = \sqrt{c^2}$

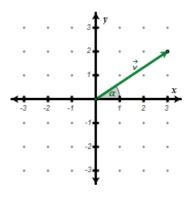


C. Rewrite vector \vec{CD} in polar form and graph it on the polar graph paper in standard position.

$$tan(\alpha) = \frac{1-11}{131}$$

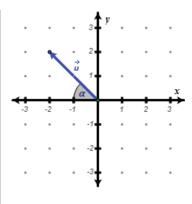
$$x \propto = \tan^{-1}\left(\frac{1}{3}\right)$$

(3.16, 341.57)

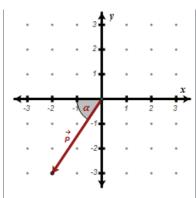

Finding Theta (where α is the reference angle)

Quad	1 (2	K &	у	posit	ive
6	e.a.	\overrightarrow{v} :	⟨3	3.2	

Quad 2 (x negative, y positive)

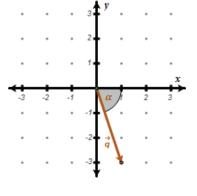

Quad 3 (x & y negative)

Quad 4 (x negative, y positive)


$$tan^{-1}\left(\frac{|2|}{|3|}\right) = \alpha \approx 33.7^{\circ}$$

$$\theta \approx 33.7^{\circ}$$

$$tan^{-1}\left(\frac{|2|}{|-2|}\right) = \alpha = 45^{\circ}$$


$$\theta = 180^{\circ} - 45^{\circ} = \mathbf{135}^{\circ}$$

$$tan^{-1}\left(\frac{|-3|}{|-2|}\right) = \alpha \approx 56.3^{\circ}$$

$$\boldsymbol{\theta} = 180^{\circ} + 56.3^{\circ}$$

$$\approx 236.3^{\circ}$$

$$tan^{-1}\left(\frac{|-3|}{|1|}\right) = \alpha \approx 71.6^{\circ}$$

$$\theta = 360^{\circ} - 71.6^{\circ} \approx 288.4$$

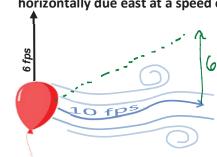
$$\theta = \alpha$$

$$\theta = 180^{\circ} - \alpha$$

$$\theta = 180^{\circ} + \alpha$$

$$\theta$$
 = 360° $-\alpha$

11. Perform the following vector operations.


A. Consider \overrightarrow{m} : $\langle -7,4 \rangle$ determine $||\overrightarrow{m}||$.

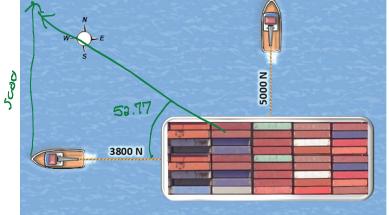
$$(-7)^{2} + (4)^{2} = c^{2}$$

 $49 + 16 = c^{2}$
 $65 = \sqrt{c^{2}}$ $||\vec{m}|| = \sqrt{65}$

B. Rewrite vector \vec{n} : (9,260°) in rectangular form.

$$\vec{n}$$
: < 9 cos 260, 9 sin 260>

12. A balloon is floating up in to the sky at a rate of 6 feet per second. At the same time the wind is blowing the balloon horizontally due east at a speed of 10 feet per second.



A. How fast is the balloon actually moving?

$$(6)^2 + (10)^2 = C^2$$

 $36 + 100 = C^2$
 $\sqrt{136} = C^2$

$$\tan(\alpha) = \frac{161}{101}$$
, $\alpha = \tan^{-1}(\frac{6}{10}) \approx 30.96^{\circ}$

13. A barge full of containers is being moved across a bay. One tow boat is pulling the barge due North with a force of 5000 Newtons. A second tow boat is pulling the barge due West with a force of 3800 Newtons.

A. In what direction will the barge move?
$$\tan (\alpha) = \frac{1500 \, \text{cl}}{138001} \qquad | \Theta = 180 - 52.77$$

$$\Theta \approx 127.23^{\circ}$$

$$0 \approx 52.77^{\circ} \text{ North of WEST.}$$

B. How much force is being applied in that directions?

$$(3800)^2 + (5000)^2 = c^2$$

 $\sqrt{39440000} = \sqrt{c^2}$
 $6280.1 N \approx C$