Name:

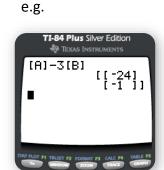
- 1. Let the following vectors be defined: \vec{a} : $\langle -3, 5 \rangle$
- \vec{b} : $\langle 7, 2 \rangle$
- \vec{c} : $\langle 4, -9 \rangle$
- \vec{d} : $\langle -2, -1 \rangle$
- A. Rewrite each vector as a column & row matrix. Then, store each as a column matrix in your Graphing Calculator.

[ENTER] and change the dimensions to 2 x 1 and enter the vector components) (Press 2nd

- B. Using your Graphing Calculator evaluate the following:
 - (i) $\vec{a} 3\vec{b}$

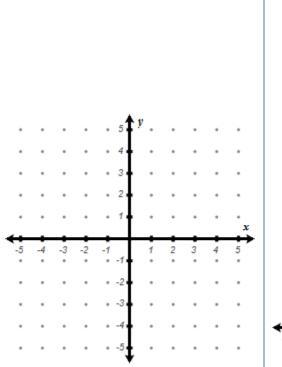
(ii) $-4\vec{d}$

(iii) $2\vec{b} + 3\vec{a} - 4\vec{c}$

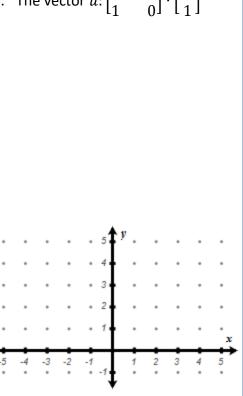


2. Using matrices to define vectors can be helpful to create transformations of vectors. Graph each matrix expression as a vector in standard position and describe how each vector compares to vector \overrightarrow{v} .

A. The vector \vec{v} : $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$



B. The vector \vec{u} : $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 1 \end{bmatrix}$

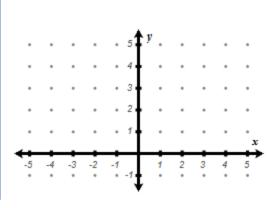


Unit 5-7

pg. 1

M. Winking

C. The vector \vec{w} : $\begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 1 \end{bmatrix}$



Here are the 2-dimensional vector transformation matrices.

Reflection Matrices				
Reflect over <u>y-axis</u>	Reflect over <u>x-axis</u>	Reflect over <i>y = x</i>	Reflect over y = -x	
$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$	

Rotation Matrices about the Origin				
Rotate by <u>90°</u>	Rotate by <u>180°</u>	Rotate by <u>270°</u>	Rotate by <u>\theta °</u>	
$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$	$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$	

- 3. Given that vector \overrightarrow{v} can be defined as \overrightarrow{v} : $\begin{bmatrix} a \\ b \end{bmatrix}$ describe what transformations take place with each of the following (compared to \overrightarrow{v})
 - A. The vector \vec{p} : $3 \cdot \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix}$
- B. The vector \vec{q} : $\begin{bmatrix} 4 & 0 \\ 0 & -4 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix}$

- 4. Given that vector \overrightarrow{u} can be defined as \overrightarrow{u} : $\begin{bmatrix} 2 \\ 6 \end{bmatrix}$, perform the following transformations on the vector.
 - A. Rotate vector \vec{u} 180° about the origin and decrease the magnitude by $\frac{1}{2}$.
- B. Reflect vector \vec{u} over the y axis. Then, rotate 50° about the origin and finally, dilate it by a factor of 2.